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Twisted surfaces
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This article proves the laundry embedding theorem. It considers surface triples
(S, G, J ) in S3 where S is a 2-manifold with boundary, G is a circle-with-chords, and J

is an arc. The surfaces satisfy an embedding condition called laundry which is similar to
being unknotted. The theorem gives elementary necessary and sufficient conditions for
two triples to be equivalent by ambient isotopy. The theorem introduces a new topolog-
ical invariant called turn. The surfaces of interest can arise from the augmented ribbon
model of unknotted single domain protein.
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1. Introduction

Modeling protein as it moves in space requires that the backbone be pre-
served throughout the movement. The backbone is represented by an oriented
arc in the augmented ribbon model [1]. The requirement that a homeomorphism
preserve this oriented arc makes turn (defined below) a topological property. An
obvious mathematical requirement is to connect the ends of the arc to make a
circle. The chords are suggested by bonds that stabilize the backbone’s position.
Proteins denature or unfold. This property suggested the laundry condition.

All spaces are assumed to be piecewise linear. Consider a graph G consist-
ing of a circle subdivided by a set of points {a0, . . ., an, b0, . . . , bn} together with
a set of n oriented chords Ei = aibi, i = 1, . . . , n. The points are labeled so that
a0 and b0 are adjacent on the circle, the oriented arc J = a0b0 in the circle con-
tains all of the vertices, a0 < a1 < · · · < an, and ai < bi , for i = 0, . . . , n. Let
E0 = a0b0 (also called a chord) be the closure of the complement of J in the
circle. A circle-with-chords is a pair (G, J ). Two graphs (G, J ) and (G′, J ′) are
said to be the same graph if there is a homeomorphism h : (G, J ) → (G′, J ′)
that preserves the orientations of the arcs J and J ′.

Suppose G is in R3, p : R3 → R2 is the orthogonal projection, and Pi =
p(Ei), i = 0, . . . , n, are the projected chords. The graph (G, J ) is said to be in
laundry position if (1) every vertical line intersects G in 0, 1 or 2 points and, if
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Figure 1. A laundry surface in three-dimensional space.

2, neither of them is a vertex of G, (2) the arc J of G lies in the x-axis, (3) each
Pi is an arc in the bottom half of the xy-plane, (4) any pair of Pi intersect in at
most one point, (5) no Pi meets the arc of G at an interior point of Pi , and (6)
if Pi meets Pj and Pk with i < j < k, then Pi meets Pj first and then Pk. The
central feature of laundry position is condition (6) which requires that the order
in which a chord meets other chords is the same as their order along the arc.
Simple examples of graphs that are isotopic to graphs in laundry position are
the face of a tennis racquet or a Hamiltonian graph in the plane whose vertices
all have degree three. Note that the arc J defines the “laundry line”.

Throughout this article a surface will refer to a triple (S, G, J ) consisting
of a 2-manifold with boundary S, a circle-with-chords G, and its arc J satisfy-
ing the condition that S is a regular neighborhood of G in S. This allows the
surface to freely twist around the edges in the graph. Two surfaces (S, G, J ) and
(S ′, G′, J ′) are said to be equivalent if there is an orientation preserving homeo-
morphism h of S3 onto itself such that h(S, G, J ) = (S ′, G′, J ′) and h preserves
the orientations of the arcs J and J ′. That is, equivalence is ambient isotopy. A
laundry surface (S, G, J ) in S3 is one that is equivalent to a surface (S ′, G′, J ′)
with (G′, J ′) in laundry position.

A laundry surface is illustrated in figure 1. There is an ambient isotopy that
moves its graph into laundry position as shown in figure 2. The twists (half-
twists) in the resulting surface are given by the numbers associated with the
edges.
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Figure 2. The graph in figure 1 is isotopic to this graph in laundry position. The numbers denote
twists in the surface resulting from the isotopy.

For i = 0, . . . , n, let Ii = aibi a subarc of J . Let X denote the family of
cycles Xi = Ei ∪ Ii, i = 0, . . . , n, oriented in the direction of the chord Ei . The
cycles in X are a basis for the first homology group of G and S. The linking
matrix is M = (lk(X′

i Xj )), where X′
i is Xi pushed off in “both directions”. If S

is orientable and A is the Seifert matrix then M = A + AT . The linking matrix
represents the Gordon and Litherland form [2] discussed in [3]. Note that the
oriented arc J determines the cycle basis and the order of the rows and columns
in the matrix.

The linking matrix is not sufficient to determine equivalence. For example,
let (G, J ) have only two chords, E1 and E2, so that the intervals I1 and I2 do not
intersect. Let (G1, J1) and (G2, J2) be embeddings of G in R2 such that G1 has
both chords in the interior and G2 has one in the interior and one in the exte-
rior of the cycle X0 (the circle). Let S1 and S2 be regular neighborhoods of G1

and G2 in R2, respectively. The pairs (S1, G1) and (S2, G2) are ambient isotopic
but J1 cannot be carried to J2.

Suppose e is an edge in J both of whose vertices have degree three. Such
as the edge e = b1a2 in the preceding examples. Suppose D is a small regular
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neighborhood of e in S. Place the label “a” on both points in ∂D ∩ J and the
label “b” on both points where ∂D meets the chords. The cyclic order of these
points in ∂D is either (aabb) or (abab). Define the turn at e to be 0 if the order
is (aabb) and 1, otherwise. The turn at an edge is an invariant of ambient isot-
opy for surfaces. It isn’t necessary to know the turn at every edge. The arcs Ii

and Ij are said to overlap if Ii ∩ Ij is nonempty, Ii is not a subset of Ij , and Ij

is not a subset of Ii . Each pair of overlapping arcs with 1 � ι < j � n defines
an ordered pair (i, j) called an overlapping pair. The overlap graph O for G has
vertex set {1, . . . , n} and edge set {ij |(i, j) is an overlapping pair}. The set of
interior first-edges of G is {uv ⊂ J |v = ai for i = min{j |j ∈ C}, for each com-
ponent C of O not containing 1}. The overlap graph for the above examples has
two vertices and no edges making the edge e = b1a2 an interior first-edge. Two
surfaces (S, G, J ) and (S ′, G′, J ′) are said to have the same turns if they have the
same turn at each interior first-edge.

The laundry embedding theorem says that the equivalence of two laundry
embeddings of the same protein model in space (or computer simulation) can be
determined by checking only the linking matrix and turns.

Theorem 1 (Laundry embedding). Two laundry surfaces are equivalent iff they
have the same graph, linking matrix, and turns.

The doubled-delta move [4] is illustrated in figure 3. The move preserves the
graph, linking matrix, and turns of a surface. The laundry embedding theorem
implies that a doubled-delta move must result in either an equivalent surface or
one that is not a laundry surface. The strips in figure 3 can be arbitrarily num-
bered and a direction arbitrarily chosen for the strip labeled 1. Note that the
order in which strip 1 meets the other two changes. If one figure satisfies con-
dition (6) for laundry position then the other may not.

Figure 3. The doubled-delta move.
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2. Lemmas

The proof of theorem 1 begins with a series of lemmas. Let I = [−1, 1].
Let I 2 = I × I in R2 and let D1 be the disk of radius 1/2 in I 2. The cube is
I 3 = I 2 × I , its ends is E = I 2 ×{−1, 1}, its cylinder is W 3 = D1 × I , and its cen-
ter arc is A = {(0, 0)}×I . Let Rπ denote the set of homeomorphisms of the cube
consisting of the identity and the three rotations of π radians about each of the
coordinate axes. Define strips having one of three types, L, U, or R correspond-
ing to twists in I 2 of −1/2, 0, or 1/2, respectively. The cylinder W 3 contains a
strip F of each type such that ∂F ⊂ ∂W 3 and the strip is carried to itself by
each of the rotations in Rπ .

Lemma 1. Suppose F is a strip of any type in the cube I 3 and A is the center
arc. Suppose f : I 3 → I 3 is an orientation preserving homeomorphism such
that f (F ) = F and f (A) = A. Then the map f is isotopic to a rotation r in Rπ

by an isotopy of I 3 that leaves F ∩ ∂I 3 and A ∩ ∂I 3 setwise fixed.

Let A1 and A2 denote the two components of F∩(∂D1×I ). The homeomor-
phism f carries the arc A1 to either itself or the arc A2 and preserves or reverses
the orientation. There is a rotation r in Rπ such that rf (A1) = A1 preserving its
orientation. By the homotopy extension theorem [5, p. 180], there is an isotopy
α such that α1rf is the identity on F and α leaves F ∩ ∂I 3 and A ∩ ∂I 3 set-
wise fixed. Let E denote the ends of I 3 and K = F ∩ E. Since E and α1rf (E)

are regular neighborhoods of K in ∂I 3, it follows from the uniqueness of regular
neighborhoods [6, p. 38] that there is an isotopy β of ∂I 3 fixed on K such that,
β1α1rf (E) = E. There is an isotopy γ of ∂I 3 leaving K fixed such that γ1β1α1rf

is the identity on E. There is a pinched collar U of ∂I 3 pinched at K missing
F −K [5, p. 41]. The isotopy γβ extends to I 3 with support in U [6, p. 37]. Thus
γ1β1α1rf is a homeomorphism of the cube which leaves the ends fixed. So it can
be considered as a restriction of an orientation preserving homeomorphism of a
solid torus. That is, isotopic to a Dehn twist [7]. Since it also keeps F fixed it
must be the trivial Dehn twist. There is an isotopy δ such that δ1γ1β1α1rf is the
identity on I 3 keeping E fixed. Let g = δγβα. Thus rf is isotopic to the identity
on I 3 by g and f is isotopic to r−1 = r by rgt .

A surface (S, G, J ) is said to be in regular position if G is in laundry posi-
tion and S is partitioned into strips of type L, U, or R whose end arcs pro-
ject homeomophically into R2. A model corresponding to (S, G, J ) is a triple
(sG, tw, cr) where sG is the subdivision of G, tw : Q → {−1/2, 0, 1/2} is the
twist function giving the twist of each strip, and cr is the crossing function that
assigns to each overlapping pair (i, j) the crossing sign, cr(i, j) ∈ {−1, 1}, of the
oriented chords Ei and Ej when projected into R2.
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Lemma 2. Every model corresponds to a uniquely embedded surface in regular
position.

Proof. Suppose M = (sG, tw, cr) is a model. An embedding of G in laundry
position with a rectangular projection into R2 is obtained by letting the projected
chord Pi be the polygonal line with vertices: (ai, 0), (ai, n−1), (bi, i−n−1), (bi, 0)

and crossings given by cr. Construct a surface (S, G, J ) in regular position with
twists given by sG and tw. Suppose that M also corresponds to another surface
(R, H, K) in regular position. The projection of a circle-with-chords in laundry
position results in a graph that has a unique embedding in R2 [8]. There is an
isotopy of R2 carrying the projection of (H, K) to the projection of (G, J ) pre-
serving the orientation of the arcs K and J . This isotopy extends to an isotopy
h of R3 that preserves vertical lines at each stage of the isotopy. The isotopy h

can be adjusted vertically to carry (H, K) to (G, J ) because both have the same
crossings and adjusted to carry R to S because both are defined by the same sub-
division and twist function.

A homeomorphism of a solid torus is isotopic to a Dehn twist. It follows
that a homeomorphism of a cylinder that is either fixed on the ends or rotates
one component of the ends through an angle pi relative to the other component
is isotopic to a homeomorphism that creates a strip having multiple twists of the
same type.

Lemma 3. Every laundry surface (S, G, J ) is equivalent to a surface (R, H, K) in
regular position.

Proof. Let h be an isotopy carrying (G, J ) to (H, K) in laundry position pre-
serving the orientation of the arcs and let S1 = h1(S). There is an ε > 0 and an
isotopy α fixed on H such that α adjusts an ε-neighborhood in S1 of each vertex
of H so that it projects homeomorphically into R2. There is a regular neighbor-
hood W of H in R3 of diameter less than ε. By the regular neighborhood the-
orem for pairs [6, p. 53], there is an isotopy β of R3 that carries S1 onto S2 =
W ∩S1 and is fixed on H . Let W 3 be the inner cylinder of the cube I 3 and F the
strip in I 3 of type U. The handlebody W [9] is the union of 3-cells Wq , that inter-
sect only on their boundaries and such that there is a homeomorphism fq :WqWq

such that fq(∂D1 × I ) = Wq ∩ ∂W, fq(A) ⊂ H, fq(F ) projects homeomorphically
into R2, and fq(F ∩ E2) ⊂ S2, for each q ∈ Q. Also, there is a homeomorphism
hq : Wq → Wq such that hq(F ) = S2 ∩ Wq , for each q ∈ Q. Each homeomor-
phism f −1

q hq is isotopic to a homeomorphism that creates a strip having multiple
twists of the same type. There is an isotopy γ of R3 such that γ (H) = H and
(γ (S2), H, K) is in regular position. Let R = γ (S2). The required isotopy is g =
γβαh.

The strips having the three twist types are superimposed in the cube.
Lemma 4 shows that this allows corresponding strips of one type to be replaced
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with those of a second type while preserving ambient isotopy. This is simply the
analogue of the result that changing a crossing in a knot or link diagram is well-
defined.

Lemma 4. Suppose (S ′, G′, J ′) and (S, G, J ) are in regular position. Suppose h :
(S ′, G′, J ′) ∼= (S, G, J ) is an ambient isotopy that carries a strip T ′ in S ′ to a
strip T in S with the same twist type. The strips T ′ and T can be replaced with
strips having a second twist type so that the resulting surfaces (R′, G′, J ′) and
(R, G, J ) are ambient isotopic by an isotopy that agrees with h on cl(S ′ − T ′).

Proof. Let I 3 denote the cube containing the strip F ′ with the first twist type
and A the center arc. There exist orientation preserving homeomorphisms f ′ and
f of I 3 into R3 carrying F ′ to T ′ and T , respectively, given by the handlebodies
for S ′ and S. Let U = f (I 3) and U ′ = h1f

′(I 3). It follows from the relative regu-
lar neighborhood theorem [5, p. 21], that there is an ambient isotopy α moving
U ′ to U keeping S fixed. The map h′ = f 1α1h1f

′ is an orientation preserving
homeomorphism of the cube onto itself, h′(F ′) = F ′, and h′(A) = A. By lemma
1, h′ is isotopic to a rotation r in Rπ , by an isotopy β that leaves F ∩ ∂I 3 and
A ∩ ∂I 3 setwise fixed. Because of the 3-cell structure of the handlebody for S,
there is a bicollar B3 of ∂U such that B3∩ S is a bicollar of ∂U ∩ S in S. The
isotopy of U onto itself, γt = fβtf

−1, extends to an isotopy of R3 with sup-
port in B3. Let g = γαh. Suppose F is the strip in I 3 of the second type. Since
r(F ) = F, g1(f

′(F ′)) = f r(F ) = f (F ). The set T and the regular neighbor-
hoods U ′ and U can be replaced by slightly smaller sets so that g agrees with h

on cl(S ′ − T ′).
Suppose e is an edge of G that is subdivided into edges x1, . . . , xk. The

sequence of twists at e is s(e) = tw(x1). . .tw(xk). Suppose tw1 and tw2 are
two twist functions defined on subdivisions sG1 and sG2 of the same graph G.
The sum sG = sG1 + sG2 and tw = tw1 + tw2 are defined by juxtaposition.
That is, if s1(e) and s2(e) are the sequences of twists at an edge e of G then
s(e) = s1(e)s2(e) is the sequence of twists for the sum. Two models are said to
be equivalent if their corresponding surfaces are equivalent.

Lemma 5. If (sG, tw, cr) ∼= (sG′, tw′, cr ′) then (sG+ sG′′, tw+ tw′′, cr) ∼= (sG′ +
sG′′, tw′ + tw′′, cr ′) for any subdivision sG′′ of G and twist function tw′′.

Proof. Let (S, G, J ) and (S ′, G′, J ′) be corresponding surfaces in regular posi-
tion and h : (R, H, J ) ∼= (R′, H ′, J ′). Let e be an edge in G and e′ = h1(e).
Subdivide each of these edges near their last endpoint to correspond to sG′′.
Partition the surfaces creating a sequence of strips of type U on the edges.
Repeat at each edge. By lemma 4, the strips can be replaced to correspond to
the twist function tw′′.
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In addition to the interior first-edges, the chord E0 and the arc a0a1 (when
n > 0) are called first-edges. A model is said to have canceled twists if only twists
of the same type occur at any edge and the twist at each first-edge of G is either
zero or one-half. Lemma 6 notes that every model is equivalent to one with can-
celed twists.

Lemma 6. (sG, tw, cr) ∼= cancel(sG, tw, cr).

Proof. Let (S, G, J ) be a corresponding surface in regular position. Suppose
n > 0, and F is a strip whose arc is a first-edge for a component C of the over-
lap graph O of G. The portion of S corresponding to C can be rotated around
the x-axis so that there is only one twist in F and it is either 0 or 1/2 depending
upon whether the number of twists in F is even or odd, respectively. Repeat this
procedure for each of the strips whose arc is a first-edge for a component of the
overlap graph by starting at a0 and moving along the x-axis to b0. The twists at
the first-edges E0 and a0a1 (when n > 0) can be moved along E0 into the last
strip on J leaving these first-edges with zero twist. Each edge can be modified
to have twists of only one type by an isotopy that collects and cancels its twists.

Suppose the edges of G are assigned weights by a real-valued function w.
The weight of a cycle is the sum of the weights assigned to the edges in the cycle.
The next proposition appears in [10] its proof provides an algorithm for comput-
ing w. In the proof of lemma 9 a twist homomorphism is defined for homology
modulo two. There is difficulty in defining such a homomorphism using integer
coefficients. In fact, proposition 1 is false, even for integer weights, if only the
cycle basis X is used. Let Y denote the family of cycles Yi = E0 ∪ Ei ∪ a0ai ∪
bib0, i = 0, . . . , n. Let Z denote the family of cycles Z(i, j) = Ei ∪Ej ∪aiaj ∪bibj

for each overlapping pair (i, j).

Proposition 1. Suppose the edges of a circle-with-chords are assigned weights by
a real-valued function w. Then w is determined by its values on the first-edges
and the cycles in X ∪ Y ∪ Z.

Proposition 2. Suppose the edges of a circle-with-chords G are assigned weights
by an integer valued function w. Suppose the weight of each first-edge is zero
and the weight of each cycle in X ∪ Y is zero. Then w(Ei) = w(Ii) = 0, i =
0, . . . , n. If, in addition, the weight of each cycle in Z is a multiple of four, then
the weight of each edge in G is even.

Proof. In the proof of Proposition 1, xi, yi , and w(Ei), are zero when the cycle
weights w(Ei) + xi, w(Ei) + yi , and xi + yi are zero. Also, when the value of
x = w(qbt) is determined, s1 + s2 = 0, s2 + z = 0, and s1 + z = s3. Hence, 2z = s3,
which is a multiple of four. Thus, z is even. It follows that the weight of each
edge is even.
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The Gordon and Litherland form GL : H1(S, Z) × H1(S, Z) → Z is repre-
sented by the linking matrix M. Suppose (S, G, J ) is a surface in regular posi-
tion and C is an oriented cycle in G. If C = ∑

riXi and R = [ri, . . ., rn] then
GL(C, C) = RMRT . Define the self-linking self(C) = (1/2)GL(C,C), twist(C)
be the sum of the twists in C, and writhe(C) be the sum of the crossing signs
of C with itself. A regular neighborhood N of C in S is a Mobius band or an
annulus. Orient the boundary components of N to agree with the orientation of
C. It can be shown that twist(C) is one-fourth of the sum of the crossing signs
of ∂N with C at twists in C, writhe(C) is one-fourth of the sum of the crossing
signs of ∂N with C at the crossings of C, and self (C) is one-fourth the total.
This yields the familiar formula self (C) = twist (C) + writhe(C).

Lemma 7. Suppose two surfaces in regular position have the same graph and
linking matrix. Suppose first-edges have the same twist sum and corresponding
crossings have the same sign. Then each edge has the same twist sum.

Proof. Define the weight w of an edge to be the sum of the twists at the edge.
First-edges have the same weight. If C ∈ X ∪ Y then writhe(C) = 0. So w(C) =
self (C). If C ∈ Z and is defined by the overlapping pair (r, s), then w(C) =
self (C)−writhe(C) = self (C)+ cr(r, s). The cycles in X ∪Y ∪Z have the same
weight. Proposition 1 implies that each edge has the same weight.

A consequence of lemma 7 is that the surfaces would have the same model
and hence be equivalent by lemma 2. The difficulty is that the crossings are not
given by the hypothesis of theorem 1. Instead of the crossings, the proof focuses
on the sidelinking numbers defined next. Suppose S is orientable and (i, j) is an
overlapping pair. The point bi has a triod neighborhood in G. Define the positive
side of S at bi using the right-hand rule and the angle at the point bi from the
chord Ei to the edge of G exiting bi and missing the edge entering bi . Define the
side-linking number to be L(i, j) = lk(X+

i , Xj ) where X+
i is the curve Xi pushed

slightly toward the positive side of S at bi . Lemma 8 gives a relation between
side-linking, twists, intersection, and crossing.

Lemma 8. Suppose (S, G, J ) is a surface in regular position. Suppose (i, j) is an
overlapping pair. Let t (i, j) be twice the sum of the twists at the arc aibj in J .
Let I (i, j) to be 1 if t (i, j) is even and 0 if t (i, j) is odd. Then 2L(i, j) = t (i, j)+
I (i, j) + cr(i, j).

Proof. Each term can be expressed as a sum of crossing signs of X+
i and Xj .

If Xi intersects Xj in S then there is a plus one crossing near bi .

Lemma 9. Suppose (S, G, J ) and (S ′, G′, J ′) are surfaces in regular position with
the same graph, linking matrix, and turns. Suppose that S is orientable. Then
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S ′ is orientable and corresponding overlapping pairs have the same side-linking
numbers.

Proof. For each edge e in G, let ntw(e) = 2tw(e) mod 2. That is, the number
of half-twists (an integer) mod 2. For any cycle C in G, let ntw(C) be the sum
over the edges in C. Using addition of cycles mod 2, ntw(C + C ′) = ntw(C) +
ntw(C ′) − 2ntw(C ∩ C ′) = ntw(C) + ntw(C ′). Thus ntw : H1(G, Z/2Z) → Z/2Z

is a homomorphism. The surface S is orientable iff ntw(C) = 0, for all cycles C.
Or, equivalently, ntw(Xi) = 0, for all basic cycles Xi ∈ X. Using values mod
2, GL(Xi, Xi) = 2self (Xi, Xi) = 2twist (Xi) = ntw(Xi). So the surface S is
orientable iff the diagonal of the linking matrix consists of even integers. There-
fore, S ′ is also orientable. Suppose (r, s) is an overlapping pair and L(r, s) and
L′(r, s) are the side-linking numbers for (S, G) and (S ′, G′), respectively. Let H

and H ′ be the subgraphs of G and G′, respectively, obtained by removing all of
the chords except E0, Er , and Es . Let R and R′ be regular neighborhoods of H

and H ′ in S and S ′, respectively. If the crossing signs, cr(r, s) and cr ′(r, s) for G

and G′ differ then there is an isotopy α that rotates Es around the x-axis so that
they agree. The isotopy α can be chosen so that α(R′, H ′) is in regular position.
There is an isotopy β, again canceling twists, so that (R′′, H ′′) = βα(R′, H ′) has
the same twist sum on first-edges as (R, H). By lemma 8, they have the same
twist on the arc asbr . By lemma 7, (R, H) and (R′′, H ′′) have the same side-link-
ing. The isotopies α and β don’t change the positive side at b or the order of r

and s, so L(r, s) = L′(r, s).
The surface (S, G, J ) is said to have trivial linking if (1) tw(e) = 0, for each

first-edge e of G, (2) self (C) = 0, for each cycle in X ∪Y , (3) self (C) ∈ {−1, 1},
for each cycle C ∈ Z, and (4) the side-linking number L(I, j) is 0 or 1 for each
overlapping pair (i, j).

Lemma 10. Suppose (S, G) has trivial linking. Then tw(Ei) = tw(Ii) = 0, for
i = 0, . . . , n, the twist at each edge in G is an integer, and S is orientable.

Proof. Define the weight of each edge in G to be twice the twist at the edge
and apply proposition 2. Thus tw(Ei) = tw(Ii) = 0, for i = 0, . . ., n. For any
cycle C in Z the self-linking and writhe are both elements of the set {−1, 1}. So
its twist, which is their difference, must be even. The weight of C is a multiple
of four. The twist at each edge is an integer and S orientable.

Two equivalent graphs will have equivalent regular neighborhoods. The
proof of the main theorem proceeds by showing that an equivalence on these
handlebodies can be extended to a carefully chosen family of disks that span
the handles under the condition of trivial linking. Suppose that (S, G) has triv-
ial linking. Let F ′ be the 2-cell in S consisting of the union of the strips for the
edges in the arc of G. There is a regular neighborhood of G that is a handle-
body W such that S ∩ ∂W = ∂S. Let W 3 be the cylinder in the cube, F the strip
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of type U, and A the center arc. There is a 3-cell C ⊂ W and a homeomorphism
w : W 3 → C such that w(A) is the arc of G and w(F) = F ′.

Since the twist at each edge in the arc of G is an integer, there is a com-
ponent of F ∩ (∂D1 × I ) that contains w−1(Ei ∩ ∂C), i = 1, . . . , n. There is a
level preserving identification map f of I 2 = I × I onto ∂D1 × I so that g = wf

identifies only points (−1, y) and (1, y), for y ∈ I, g−1(∂F ′) = {−1, 0, 1}× I , and
g−1(Ei) ⊂ {0} × I, i = 1, . . . , n. For i = 1, . . . , n, each chord Ei intersects ∂C

in two points near its endpoints, ai and bi . To ease the notation, let ai and bi ;
also denote the inverse images of these points in g−1(Ei) so that {0} × I has the
same interval structure as the arc in G. The components of cl(W − C) are han-
dles of W with cores Ai = cl(Ei ∩ (W − C)) for i = 1, . . . , n and A0 = E0. Let
−1 < xn < · · · < x1 < 0 be any sequence of points.

Lemma 11. Suppose that (S, G, J ) has trivial linking. Then there is a set
{K0, . . ., Kn} of arcs in ∂C such that Ki joins the points in Ei ∩ ∂C and a set
{B0, . . ., Bn} of pairwise disjoint disks such that ∂Bi = Ai∪Ki and C∩ int Bi = ∅,
for i = 0, . . . , n.

Proof. Suppose G has the rectangular projection as in lemma 2. It has the
property that chords with larger subscripts are nearer the x-axis. The proof is by
induction on n. Suppose n = 0 or 1. There is an ambient isotopy that untwists
each edge. The required disks are immediate. Suppose that n > 1. There is an
ambient isotopy α that untwists the chord En and the arc In leaving the remain-
ing twists in S unchanged. There is a horizontal disk D with ∂D = Xn. Suppose
the first point preceding bn is not an then the first point preceding bn is a right
endpoint br for some r < n. In untwisting the arc, the chord Er which over-
laps En may wrap around the x-axis. Since r < n and the side-linking number
L(r, n) is 0 or 1, Er ∩D can be at most one point. The positive side of S at bn is
up. The cycle Xr is pushed up. There are six possibilities. The chord Er can pass
either over or under En and possibly either over or under and around the x-axis.
The case under-up-and-around results in L(r, n) = 2 and the case over-down-
and-around results in L(r, n) = −1. Neither occur. The cases where Er simply
passes over En or passes under-under-and around result in L(r, n) = 0. The right
feet of handles at En and Er will pass each other when rotated clockwise. The
cases where Er simply passes under En or passes over-over-and-around result in
L(r, n) = 1. The right feet of handles at En and Er pass each other when rotated
counter clockwise. Sliding the arc An across the disk B = α−1(D) defines a han-
dle slide so that An is not overlapped by Ar . There is an homeomorphism of I×I

onto itself that transposes the points bn and br on {0} × I by a corresponding
rotation. Continuing, define a composition of handle slides sn that corresponds
to a product of transpositions tn. So that starting with the arc An of the inner-
most chord En the handle slides in sn move the right edge of An and shrink an
edge of An until An no longer has any crossings. The last transposition may be
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assumed to also translate the two feet out of the way so that tn(an) and tn(bn)

are in {xn} × I . Define by induction a sequence of handle slides sn, . . . , s1 and
corresponding sequences tn, . . ., t1 of transpositions. The composition of the rota-
tions performing the transpositions defines a homeomorphism h of I × I onto
itself. The arcs h(ai)h(bi) ⊂ {xn} × I , for i = 1, . . . , n, will be pairwise disjoint.
The required arcs are Ki = gh−1(h(ai)h(bi)), for i = 1, . . . , n,. Let K0 be the
union of g({−1}× I ) and two radii in the ends of the 3-cell C. There is a family
of pairwise disjoint disks {F0, . . ., Fn} such that ∂Fi = g(h(ai)h(bi)) ∪ si(Ai), for
i = 1, . . . , n. Reverse the sequences of slides and let Bi be the result of moving
Fi , for i = 1, . . . , n. These are the required spanning disks.

The reader should note in the above proof that the rotation direction was
determined by the side-linking number.

Proof of Theorem 1. It is immediate that equivalent surfaces must have the same
graph, linking matrix, and turns. To show the converse it suffices, by Lemma 3, to
consider surfaces in regular position. Suppose (S, G, J ) and (S ′, G′, J ′) are sur-
faces in regular position with the same graph, linking matrix, and turns. There
is a homeomorphism h : (G, J ) → (G′, J ′) that preserves the orientations of
the arcs J and J ′. Let M = (sG, tw, cr) and M ′ = (sG′, tw′, cr ′) be models
corresponding to these surfaces. Let tw−1 denote the inverse of tw obtained by
changing twists of type R to type L and those of type L to type R. Let M1 =
cancel(sG + sG, tw + tw−1, cr). Let M2 = cancel(sG′ + sG, tw′ + tw−1, cr ′). If
it can shown that M1

∼= M2, it will follow from lemmas 5 and 6 that M ∼= M ′.
By lemma 2 there are surfaces (R, G, J ) and (R′, G′, J ′) in regular position corre-
sponding to M1 and M2. Note that (R, G) has no twists. Also note that (R, G, J )

and (R′, G′, J ′) have the same turns and linking matrix. That is, the turn at an inte-
rior first-edge, which is the twist (mod-two), will still agree after the additions, as
will the linking matrix, and, by lemma 6, canceling twists can be done by an isoto-
py. Consider the crossing relation, lemma 7, for an overlapping pair (i, j). Since R

has no twists, the sum t (i, j) is zero and d(i, j) = 1. Hence 2L(i, j) = 1+cr(i, j).
So the side linking number L(i, j) is 0 or 1 for each overlapping pair. Thus R has
trivial linking and is orientable. By lemma 9, R′ is orientable and corresponding
overlapping pairs have the same side-linking numbers. Since (R′, G′, J ′) has can-
celed twists, the twist at interior first-edges is zero or one-half. These twists must
be zero because R′ has the same turns as R. Thus the twist at all first-edges of
G′ is zero. So (R′, G′, J ′) also has trivial linking. As noted in the remark prior to
lemma 11, there are 3-cells C and C ′ in the handlebodies W and W ′ for R and R′

and homeomorphisms w and w′ of the cylinder W 3 onto C and C ′, respectively.
The homeomorphisms w and w′ can be chosen so that h = w′w−1 is orientation
preserving and extends h on G. The twist is zero at each chord in both R and R′,
so h can be extended to the handles, yielding h : (W, R, G, J ) → (W ′, R′, G′, J ′).
There is an identification map f of I 2 onto ∂D1 × I that defines maps g = wf

and g′ = w′f of I 2 into ∂C and ∂C ′ for R and R′, respectively. Since G and
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G′ have the same intervals, they have the same sequence of transpositions. Since
R and R′ have the same side-linking numbers, the transpositions have the same
rotation directions. Thus the same family of arcs {Ki, i = 1, . . ., n} in I 2 may be
used in defining spanning disks. Also, hg(Ki) = g′(Ki). There is a set of spanning
disks for the handles of W and W ′ by lemma 11. The homeomorphism h can be
extended to map each slightly thickened spanning disk to the corresponding one.
The homeomorphism h can be extended to S3. Thus (R, G, J ) is equivalent to
(R′, G′, J ′). This establishes that M1

∼= M2 and M ∼= M ′. That is, (S, G, J ) and
(S ′, G′, J ′) are equivalent.

Corollary 1. Suppose N and N ′ are 2-manifolds with boundary (possibly empty).
Suppose {B1, . . . Br} and {B ′

1, . . . , B ′
r} are families of pairwise disjoint disks in N

and N ′ respectively. Suppose (S, G, J ) and (S ′, G′, J ′) are laundry surfaces such
that N − ∪ int Bi = S and N ′ − ∪ int B ′

i = S ′. If h : (S, G, J ) ∼= (S ′, G′, J ′) is an
equivalence such that h1(∂Bi) = ∂(B ′

i ), for i = 1, . . . , n then h1 can be assumed
to carry N to N ′.

Proof. Suppose (G1, J1) is any graph in laundry position and W1 is a regular
neighborhood of G1. Then S3 − int W1 is a handlebody. To see this, consider
(S1, G1, J1) where S1 has no twists. Then (S1, G1, J1) has trivial linking. There is
a regular neighborhood of G1 that is a handlebody W2 such that S1∩∂W2 = ∂S1.
By lemma 11, there is a family of disks that when thickened will form handles
for S3 − intW2. By the uniqueness of regular neighborhoods, S3 − int W1 is also
a handlebody. So, in proving the corollary, let K = (∪B ′

i ) ∪ (∪h1(Bi)) and let W

be a regular neighborhood of S ′ mod K in S3 [5]. Let W ′ = S3 − int (W). Since
the disks h1(Bi) and B ′

i have the same boundary in the handlebody W ′, h can be
adjusted in this handlebody by cut-and-paste so that h1(Bi) = B ′

i , for i = 1, ..., n.

Thus h1(N) = N ′.
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